THE EFFECT OF REPLACING A 3-O-ACETYL GROUP BY A 3-O-BENZYL GROUP IN A METHYL 4-O-TRITYL-β-D-XYLOPYRANOSIDE DERIVATIVE ON THE EFFICIENCY OF 1,2-trans-GLYCOSYLATION WITH A D-XYLOSE 1,2-O-(1-CYANOETHYLIDENE) DERIVATIVE

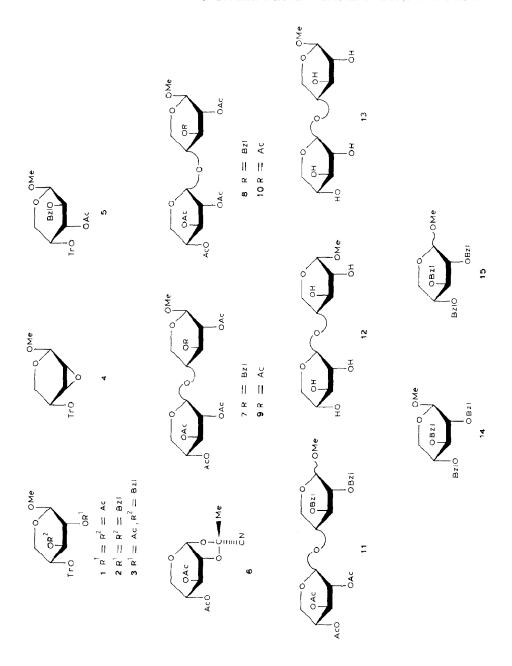
NIKOLAY E. NIFANTEV, LEON V. BACKINOWSKY, AND NIKOLAY K. KOCHETKOV

N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.)

(Received November 3rd, 1988; accepted for publication, January 23rd, 1989)

ABSTRACT

Replacement of AcO-3 in methyl 2,3-di-O-acetyl-4-O-trityl- β -D-xylopyranoside with a benzyl group greatly increases the 1,2-trans-stereoselectivity of glycosylation with a D-xylopyranose 1,2-O-(1-cyanoethylidene) derivative. Anomerisation of methyl 2-O-benzyl- β -D-xylopyranoside derivatives occurred under the action of triphenylmethylium perchlorate.


INTRODUCTION

In previous studies of triphenylmethylium perchlorate-catalyzed glycosylation of methyl 2,3-di-O-acetyl-4-O-trityl- β -D-xylopyranoside (1) with 1,2-O-(1-cyanoethylidene) derivatives of D-xylose and some other monosaccharides, the formation of 1,2-cis-linked disaccharide derivatives (10-30%) together with the desired, 1,2-trans-linked products was observed. The loss of stereospecificity was suggested to be connected with a decreased reactivity of the trityl ether 1, steric factors, or competition by the catalyst counter-ion acting as a nucleophile. X-Ray analysis of 1 has revealed 3,4 a 4C_1 conformation with O-4 sterically shielded by the carbonyl oxygen of AcO-3, which should hinder attack of an electrophile at O-4.

Thus, it was of interest to investigate the stereochemical outcome of glycosylation of 4-O-tritylated methyl β -D-xylopyranoside derivatives having no carbonyl function in the 3-substituent, namely, methyl 2,3-di-O-benzyl- (2) and methyl 2-O-acetyl-3-O-benzyl-4-O-trityl- β -D-xylopyranosides (3) with 3,4-di-O-acetyl-1,2-O-[1-(endo-cyano)ethylidene]- α -D-xylopyranose (6).

RESULTS AND DISCUSSION

Compound 2 was prepared from methyl 2,3-di-O-acetyl-4-O-trityl- β -D-xylopyranoside¹ (1) by deacetylation and then benzylation. Treatment of methyl 2,3-anhydro-4-O-trityl- β -D-ribopyranoside⁵ (4) with sodium benzyl oxide followed by acetylation gave 3 (65%) and methyl 3-O-acetyl-2-O-benzyl-4-O-trityl- β -D-arabino-

pyranoside (5, 20%). The structure of 5 was established on the basis of 1 H-n.m.r. data (Table I). The ${}^{3}J$ values for 3 were smaller than those for 1 and 2 (Table I). The products (7 and 8) of glycosylation of 3 (see below) had ${}^{3}J$ values typical of D-xylo compounds in the ${}^{4}C_{1}$ conformation. Thus, it follows that 3 is the derivative of methyl β -D-xylopyranoside and its conformation differs from ${}^{4}C_{1}$. The location of the acetyl and benzyl groups in 3 and 5 was indicated unequivocally by the chemical shifts of the resonances for H-2 and H-3 in 1 H-n.m.r. spectra.

Glycosylation of 3 with 6 was performed in the presence of 0.1 mol of triphenylmethylium perchlorate as a catalyst under conditions usually employed for glycosylation with sugar 1,2-O-(1-cyanoethylidene) derivatives. The reaction proceeded as expected with high stereoselectivity and efficiency to give the disaccharide derivatives 7 and 8 ($\alpha\beta$ -ratio 1:28) in a combined yield of 87%. An $\alpha\beta$ -ratio of 1:2.1 was associated with the glycosylation of 1 with 6 to give the disaccharide derivatives 9 and 10 in a similar combined yield.

In order to compare reactivities of the trityl ethers 1 and 3, a mixture was glycosylated with 6 (molar ratio 6:1:3 = 1:1.1:1.1). The resulting mixture contained 1 and 3 together with four disaccharide derivatives (t.l.c.) from which 7 (76%) and 1 (70%) were isolated. Thus, 3 was more reactive than 1 and this may account for the higher stereoselectivity of its glycosylation.

The structure of the disaccharide derivatives 7 and 8 and the configuration of the newly formed linkages followed unequivocally from their ¹H- and ¹³C-n.m.r. spectra (Tables I and II).

TABLE I 1 H-N.M.R. DATA (CDCl₃) (δ IN P.P.M., J IN Hz) FOR **2, 3, 5, 7, 8**, AND **14**

Compound	Residue	H-1	Н-2	Н-3	H-4	H-5a	H-5b
2		4.32	3.41	3.90	3.78	2.95	2.81
3		4.40	4.84	3.45	3.67	2.94	3.27
5		4.80	4.23	5.07	3.94	2.88	3.29
7	R	4.26	4.86	3.54	3.84	3.22	3.98
	N	4.53	4.90	5.14	4.94	3.26	4.06
8	R	4.30	4.90	3.60	3.72	3.38	4.16
	N	5.15	4.87	5.51	4.98	3.67	3.85
14		4.38	3.48	b	3.33	ь	4.06
J _{1,2}	$\mathbf{J}_{2,3}$	J _{3,4}	J _{4,5a}	J _{4,5e}		J _{5a,5e}	
7.2	8.6	8.6	8.6	4.8		12.0	
5.2	6.3	6.3	6.2	3.5		12.3	
3.1	10.0	3.5	3.5	1.5		12.6	
7.0	8.5	8.5	8.0	5.0		11.8	
7.0	8.6	8.6	8.6	5.5		12.0	
6.9	8.5	8.5	9.0	5.0		12.0	
3.5	10.0	10.0	11.0	6.0		11.0	
7.5	9.1			4.8		12.0	

^aR, "reducing" unit; N, "non-reducing" unit. ^b3.70 (m, 2 H, H-3,5a).

TABLE II
CHARACTERISTIC ¹³ C-N.M.R. DATA FOR 2 , 3 , 7 , 11 , 14 , AND 15 (CDCI ₃ ; δ IN P.P.M., J IN Hz)

Compound	Residue ^a	C-1	C-5	OCH_3	$\mathbf{J}_{C\text{-}1,H\text{-}1}$
2		104.9	64.6	56.6	
3		100.8	62.3	55.6	161
7	R	101.9	62.2	56.3	
	N	99.9	62.2		
11 ^b	R	98.5	59.0	55.4	166
	N	99.6	61.6		160
11 ^c	R	105.3	63.1	57.0	161
	N	99.9	62.1		159
14		105.1	63.6	56.5	161
15^b		98.5	59.9	55.2	168
15 ^c		105.4	64.0	56.7	

^aR, "reducing" unit; N, "non-reducing" unit. ^bMajor product. ^cMinor product.

Likewise, glycosylation of **2** with **6** was highly 1,2-trans-stereoselective. According to the 1 H-n.m.r. data, the mixture of products contained only traces of a compound with a non-reducing α -xylopyranosyl residue which could not be isolated. Analysis of the main product (**11**) by 13 C-n.m.r. spectroscopy showed it to be a 10:1 C-1 $\alpha\beta$ -mixture (Table II). Hydrogenolysis of this product and deacetylation gave a mixture of methyl α - (**12**) and β -xylobiosides (**13**). The 13 C-n.m.r. spectrum of **13** (Table III) coincided with that reported⁶. The spectrum of **12** has not been reported hitherto and it was calculated from the 13 C-n.m.r. spectrum of methyl α -D-xylopyranoside, using spectral effects of glycosylation⁶. Coincidence of the experimental and calculated spectra of **12** is seen from the data in Table III.

The formation of the $\alpha\beta$ -mixture 11 may have been due to triphenyl-methylium perchlorate-induced anomerisation of the product 11β and/or 2. Anomerisation of glycosides in the presence of triphenylmethylium salts has not been observed previously. The possibility of anomerisation in the reaction of 2 and 6 was supported by the finding that treatment of methyl 2,3,4-tri-O-benzyl- β -D-

TABLE III 13 C-n.m.r. data for xylobiosides **12** and **13** (D₂O; δ in p.p.m., J in Hz)

Compound	Residuea	C-1	C-2	C-3	C-4	C-5	<i>ОСН</i> ₃	$\mathbf{J}_{C-I,H-I}$
12 ^b	R	100.5	72.5	72.5	77.8	60.0	56.4	171
		(100.6)	(72.3)	(72.3)	(77.6)	(59.8)	(56.0)	
	N	103.1	74.0	76.9	70.4	66.5		160
		(103.1)	(74.0)	(76.9)	(70.4)	(66.5)		
13	R	105.1	74.0	75.0	77.7	64.1	58.4	156
	N	103.1	74.0	76.9	70.4	66.5		160

^aR, "reducing" unit; N, "non-reducing" unit. ^bCalculated chemical shifts are given in parentheses.

xylopyranoside (14) with 0.1 mol of triphenylmethylium perchlorate under glycosylation conditions gave an 8.1:1 $\alpha\beta$ -mixture of the xyloside 15 (13 C-n.m.r. data).

The anomerisation of 14 was accompanied by decomposition, which accounts for the relatively low yield (61%) of 15. The yield of 11 was also rather low (51%) and was probably due to decomposition. Thus, the preparative use of this anomerisation reaction seems doubtful.

The increase in the stereoselectivity of glycosylation of 3 compared to that of 1 reflects the replacement of AcO-3 by a benzyl group and alteration of conformation (see above). However, comparison of the results of glycosylation of the trityl ethers 1 and 2, which have the same conformation, shows that the presence of the benzyl group at O-3 results in higher stereoselectivity. This finding supplements the known approaches to the same end, viz., the use of triphenylmethylium with complex anions (e.g., tetrafluoroborate²) as catalysts and a high-pressure technique⁷.

Sugar trityl ethers benzylated at O-2 should be avoided in glycosylations of the type discussed due to anomerisation and decomposition in the presence of triphenylmethylium perchlorate. This study supplements the previous report⁸ where the formation of a complex mixture upon attempted glycosylation of methyl 2,4,6-tri-O-benzyl-3-O-trityl- α -D-galactopyranoside with a galactose 1,2-O-(1-cyanoethylidene) derivative was attributed to triphenylmethylium perchlorate-induced oxidation of BzlO-6.

EXPERIMENTAL

Melting points were determined with a Kofler apparatus and optical rotations, for solutions in chloroform, with a digital polarimeter DIP-360 (JASCO) at 30°. N.m.r. spectra were recorded with a Bruker WM-250 instrument for solutions in CDCl₃ (internal Me₄Si). Triphenylmethylium perchlorate was synthesised as described⁹ and further purified by reprecipitation from nitromethane by the addition of ether¹⁰. Kieselgel 60 (Merck) was used for t.l.c. with ethyl acetate—toluene (A, 1:4; B, 1:3) and ethyl acetate—hexane (C, 7:33; D, 13:33), and detection by charring with sulphuric acid. Column chromatography was performed on Silica Gel L 40/100 μ m (C.S.S.R.) by gradient elution with hexane—ethyl acetate (E) or benzene—ethyl acetate (F).

Methyl 2,3-di-O-benzyl-4-O-trityl- β -D-xylopyranoside (2). — To a solution of 1¹ [1.0 g, 2.0 mmol; $R_{\rm F}$ 0.65 (solvent A)] in methanol (10 mL) was added methanolic M sodium methoxide (0.2 mL), and the mixture was kept for 20 min until deacetylation was complete (methyl 4-O-trityl- β -D-xylopyranoside has $R_{\rm F}$ 0.22), and then concentrated to dryness. To a solution of the residue in dry N,N-dimethylformamide (5 mL) was added sodium hydride (150 mg of an 80% dispersion in mineral oil; 5 mmol) followed by benzyl chloride (0.61 mL, 5 mmol) dropwise with cooling. The mixture was stirred for 1 h at 20°, then treated with methanol (5 mL), diluted with water (50 mL), and extracted with CHCl₃ (3 × 50 mL). The

combined extracts were washed with water and concentrated. Column chromatography of the residue (solvent E) gave amorphous **2** (0.95 g, 81%), $[\alpha]_D$ +22° (c 1), R_F 0.79 (solvent A) and 0.35 (solvent B).

The n.m.r. data are listed in Tables I and II.

Methyl 2-O-acetyl-3-O-benzyl-4-O-trityl-β-D-xylopyranoside (3) and methyl 3-O-acetyl-2-O-benzyl-4-O-trityl-β-D-arabinopyranoside (5). — To a solution of sodium benzyl oxide (from sodium hydride, 0.94 g of an 80% dispersion in mineral oil; 30 mmol) in benzyl alcohol (20 mL) was added a solution of 4^5 (1.20 g, 3.1 mmol) [R_F 0.45 (solvent D)] in benzyl alcohol (10 mL). The mixture was heated for 20 h at 105° under dry argon until 4 disappeared (t.l.c.). Benzyl alcohol was distilled off and the residue was treated with acetic anhydride (15 mL) in pyridine (23 mL) in the presence of 4-dimethylaminopyridine (10 mg). Conventional work-up followed by column chromatography (solvent E) gave 3 (1.08 g, 64.7%) and 5 (0.34 g, 20.4%).

Compound 3, syrup, had $[\alpha]_D = -39^\circ$ (c 1), $R_E = 0.40$ (solvent D).

Compound 5 had m.p. $174\text{--}175^\circ$ (from ethyl acetate-hexane), $[\alpha]_D -121.2^\circ$ (c 1), $R_F 0.32$ (solvent D).

Anal. Calc. for C₃₄H₃₄O₆: C, 75.82; H, 6.36. Found: C, 75.74; H, 6.35.

The n.m.r. data are listed in Tables I and II.

Methyl 2-O-acetyl-3-O-benzyl-4-O-(2,3,4-tri-O-acetyl-β- and -α-D-xylo-pyranosyl)-β-D-xylopyranoside (7 and 8). — Glycosylation of 3 (295.9 mg, 0.55 mmol) with $6^{1,2}$ (142.5 mg, 0.5 mmol) was performed in dichloromethane (2 mL) for 17 h at room temperature in the presence of triphenylmethylium perchlorate (17 mg, 0.05 mmol), using a vacuum technique¹. Column chromatography (solvent F) of the product gave 7 (235 mg, 84%) and 8 (8 mg, 3%).

Compound 7 had m.p. 139–140° (from ethyl acetate-hexane), $[\alpha]_D = 67^\circ$ (c. 1), $R_E = 0.26$ (solvent B).

Anal. Calc. for C₂₆H₃₄O₁₃: C, 56.31; H, 6.18. Found: C, 56.33; H, 6.22.

Compound 8, syrup, had $[\alpha]_D +32.5^\circ$ (c 0.8), R_F 0.28 (solvent B).

The n.m.r. data for 7 and 8 are listed in Tables I and II.

Competitive glycosylation of the trityl ethers 1 and 3. — Glycosylation of a mixture of 1 (269.5 mg, 0.55 mmol) and 3 (295.9 mg, 0.55 mmol) with 6 (142.5 mg, 0.50 mmol) in the presence of triphenylmethylium perchlorate (17 mg, 0.05 mmol) in dichloromethane (3 mL) was performed under the conditions for the synthesis of 7 and 8. The mixture of products contained (t.l.c.) 1 and 7 [major products, R_F 0.85 and 0.26, respectively (solvent B)], 3, 8, 9, and 10 [minor products, R_F 0.92, 0.28, 0.19, and 0.22, respectively (solvent B)]. Column chromatography (solvent F) of the mixture gave 1 (190 mg, 70%) and 7 (210 mg, 76%), which were identified by n.m.r. spectroscopy.

Glycosylation of the trityl ether 2. — The reaction of 6 (142.5 mg, 0.5 mmol) with 2 (322 mg, 0.55 mmol) in dichloromethane (2 mL) in the presence of triphenylmethylium perchlorate (17 mg, 0.05 mmol) was performed as described for the synthesis of 7 and 8. Column chromatography (solvent F) gave the product 11 [155]

mg, 51%, R_F 0.20 (ethyl acetate-benzene, 7:33)] and a mixture (15 mg) of 11 and its α -(1 \rightarrow 4)-linked isomer.

Catalytic hydrogenolysis of 11 (10% Pd/C, EtOH, 40°, 2 h) followed by deacetylation with methanolic sodium methoxide gave a quantitative yield of a mixture of methyl xylobiosides 12 and 13, the ¹³C-n.m.r. spectra data of which are listed in Table III.

Methyl 2,3,4-tri-O-benzyl-β-D-xylopyranoside (14). — Methyl β-D-xylopyranoside (330 mg, 2 mmol) was treated with benzyl chloride (1.5 mL, 13 mmol) and sodium hydride (600 mg of an 80% dispersion in mineral oil, 20 mmol) in N,N-dimethylformamide (20 mL), followed by conventional work-up and column chromatography (solvent E), to give 14 (860 mg, quantitatively yield), m.p. ~30°, $[\alpha]_D + 8^\circ$ (c 1), R_F 0.52 (solvent D) and 0.26 (solvent C).

The n.m.r. data for 14 are listed in Tables I and II.

Anomerisation of 14. — Treatment of 14 (217 mg, 0.5 mmol) with triphenylmethylium perchlorate (17 mg, 0.05 mmol) in dichloromethane (2 mL) for 17 h and column chromatography (solvent E) gave 15 (133 mg, 61.3%), $[\alpha]_D$ +22° (c 1), R_F 0.21–0.26 (solvent C).

The ¹³C-n.m.r. data for 15 are listed in Table II.

REFERENCES

- 1 L. V. BACKINOWSKY, N. E. NIFANT'EV, AND N. K. KOCHETKOV, Bioorg. Khim., 9 (1983) 1089-1096.
- 2 L. V. BACKINOWSKY, N. E. NIFANT'EV, AND N. K. KOCHETKOV, Bioorg. Khim., 10 (1984) 226-231.
- 3 L. G. VORONZOVA, M. O. DEKAPRILEVICH, AND O. S. CHIZHOV, Izv. Akad. Nauk SSSR, Ser. Khim., (1985) 1563–1567.
- 4 L. G. VORONZOVA, M. O. DEKAPRILEVICH, AND O. S. CHIZHOV, Bioorg. Khim., 12 (1986) 257-263.
- 5 L. V. BACKINOWSKY, N. E. NIFANT'EV, M. I. STRUCHKOVA, V. I. BETANELI, AND N. K. KOCHETKOV, Bioorg. Khim., 9 (1983) 74–86.
- 6 P. KOVAC, J. HIRSCH, A. S. SHASHKOV, A. I. USOV, AND S. V. YAROTSKY, CArbohydr. Res., 85 (1980) 177–185.
- N. K. KOCHETKOV, V. M. ZHULIN, E. M. KLIMOV, N. N. MALYSHEVA, Z. G. MAKAROVA, AND A. Y. OTT, Carbohydr. Res., 164 (1987) 241–254.
- 8 M. V. Ovchinnikov, N. E. Byramova, L. V. Backinowsky, and N. K. Kochetkov, *Bioorg. Khim.*, 9 (1983) 391–400.
- 9 H. J. DAUBEN, JR., L. R. HONNEN, AND K. M. HARMON, J. Org. Chem., 25 (1960) 1442-1445.
- 10 N. K. KOCHETKOV, V. I. BETANELI, M. V. OVCHINNIKOV, AND L. V. BACKINOWSKY, Tetrahedron, 37 (1981) Suppl. 9, 149–156.